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A method for forecasting the number of earthquakes with M > Mt in the testing period 

[S, T] based on the data of earthquakes 𝑫 = 𝑡! ,𝑀! !!!
!  in the testing period [0, T] is 

described below. Note that we make use of all the observed data including earthquakes 

below the completeness magnitude. 

 

1. Model description 

 

A joint rate intensity rate of aftershocks at time t after the main shock with magnitude M 

is modelled by the Omori-Utsu and Gutenberg-Richter laws, given as 

𝜆 𝑡,𝑀|𝐾,𝑝, 𝑐,𝛽 =
𝐾

𝑡 + 𝑐 ! 𝛽𝑒
!! !!!! , (1) 

where K, p, c, and β are parameters and M0 represents the main shock magnitude. We 

also consider the detection rate of aftershocks that depends on time and magnitude to 

consider missing of early aftershocks, given as 

Φ 𝑀 𝜇 𝑡 ,𝜎 =
1
2𝜋𝜎!

𝑑𝑥 exp −
𝑥 − 𝜇 𝑡 !

2𝜎!
!

!!
, (2) 

where µ(t) is a time-varying parameter that represents the magnitude with 50% 

detection rate and σ is a parameter representing the magnitude range of partially 

detected events. To make the following estimation plausible, we decompose the 

time-varying parameter µ(t) to the time-varying part µ0(t) and the constant term µ1, µ(t) 

= µ0(t) + µ1, and fix the µ0(t) to the one estimated by the Bayesian smoothing method 

proposed in our previous studies (Omi et al., 2013: also see Appendix). In this way, the 

time-varying parameter µ(t) is now reduced to a single parameter µ1. Finally our model 

is characterized by a parameter set θ = {K, p, c, β, σ, µ1} 

 

2. Bayesian Estimation 

 

We here estimate the parameter set θ given the observed aftershock data D. In the 
context of Bayesian statistics, the plausibility of the parameter values given the data is 

quantified by the posterior probability distribution given by Bayes’ theorem as 



𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(𝜃|𝑫) ∝ 𝐿(𝜃|𝑫)𝑝𝑟𝑖𝑜𝑟(𝜃), (3) 

where L(θ|D) and prior(θ) are the likelihood function and prior probability distribution 

respectively. If we assume that the observed earthquakes follow the inhomogeneous 

Poisson process with the intensity rate 𝜈! 𝑡,𝑀 = 𝜆 𝑡,𝑀 𝐾,𝑝, 𝑐,𝛽 Φ 𝑀 𝜇 𝑡 ,𝜎 , the 

log-likelihood function can be obtained as  

ln𝐿 𝜃 𝑫 = 𝜈! 𝑡! ,𝑀!
!!!!!!

− 𝑑𝑀 𝑑𝑡𝜈! 𝑡,𝑀
!

!

!

!!
. (4) 

We use independent priors for the p, c, β, and σ parameters, prior(θ) = prior(p)

prior(c) prior(β) prior(σ). Here the respective prior is given by N(1.05, 0.132), 

LN(−4.02, 1.422), N(1.96, 0.342), and LN(−1.61, 1.02), where N denotes the normal 
distribution and LN denotes the log-normal distribution based on Omi et al., (2016). 

 

To appropriately account for the estimation uncertainty, we combine the forecasts from 

many probable parameter sets (Bayesian forecasting). For this purpose, we sample 

many parameter sets 𝜃! !!!
!  from the posterior probability distribution with the 

Markov chain Monte Carlo method. For our method, we use 1000 parameter sets.  

 

3. Bayesian Forecasting 

 

Given a parameter set θ, the predictive distribution P 𝑛 𝜃,𝑀!  of the number n of 

earthquakes with with M > Mt in the testing period [S, T] is the Poisson distribution with 

mean given by 

𝑛 = 𝑑𝑀 𝑑𝑡
!

!
𝜆 𝑡,𝑀 𝐾,𝑝, 𝑐,𝛽

!

!!
. (5) 

For the Bayesian forecasting, the predictive distribution P 𝑛 𝜃! !!!
! ,𝑀!  is given by 

P 𝑛 𝜃! !!!
! ,𝑀! =

1
𝑚 P 𝑛 𝜃! ,𝑀!

!

!!!
. (6) 

 

Appendix . Bayesian smoothing method for the time-varying detection rate 

 

A time-varying detection rate is estimated based on the Bayesian smoothing method. 

We first discretize the time-varying parameter µ(t) as 𝜇 𝑡 = 𝜇!  𝑡!!! < 𝑡 ≤ 𝑡! , where 

⋅

⋅ ⋅



ti is the occurrence time of i-th aftershock and we set t0 = 0. Thus the time-varying 

parameter µ(t) is now represented by a N-dimensional vector 𝝁 = 𝜇! !!!
! , where N is 

the number of observed aftershocks in the learning period.  

  

The likelihood function of 𝝁 given the observed magnitude sequence 𝑴 = 𝑀! !!!
!  is 

given by 

𝑃!,! 𝑴 𝝁 = 𝛽𝑒!! !!!!! !
!" !

! 𝛷 𝑀! 𝜇! ,𝜎
!

!!!
, (7) 

(see Omi et al., 2013). To estimate 𝝁, which has the same length as the data, we 

introduce smoothness constraint that penalizes the time-variation of 𝝁, given as 

P! 𝝁 =
1
2𝜋𝑉

𝑒!
!!!!!!!!!!!!! !

!!
!

!!!
, (8) 

where V is a hyper-parameter that controls the smoothness of 𝝁. From the Bayes’ 

theorem, the posterior probability distribution of 𝝁 given the data 𝑴 under the hyper 

parameters {𝛽,𝜎,𝑉} is given by 

P!,!,! 𝝁 𝑴 ∝ P!,! 𝑴 𝝁 P! 𝝁 . (3) 

The MAP estimate 𝝁∗ given the hyper-parameters {𝛽,𝜎,𝑉}, 
𝝁∗ = argmax𝝁 𝑃!,!,! 𝝁 𝑴 , can be readily found by using the Newton method. 

 

The Bayesian smoothing method aims to find the MAP estimate 𝝁∗ under the optimal 

estimates of the hyper-parameters {𝛽,𝜎,𝑉}. The hyper-parameters are optimized by 

maximizing the posterior probability distribution of the hyper-parameters given as  

𝑃 𝛽,𝜎,𝑉 𝑴 ∝ 𝑃 𝑴 𝛽,𝜎,𝑉 𝑃 𝛽,𝜎,𝑉 . (3) 

Here P 𝑴 β,σ,V  is the marginal likelihood function, 

𝑃 𝑴 𝛽,𝜎,𝑉 = 𝒅𝝁𝑃!,! 𝑴 𝝁 𝑃! 𝝁 , (3) 

and we approximate it using the Laplace approximation as 

𝑃 𝑴 𝛽,𝜎,𝑉 ≈ 2𝜋
!
! −𝐻 !!!𝑃!,! 𝑴 𝝁∗ 𝑃! 𝝁∗ , (3) 

where 𝝁∗ is the MAP estimate, and H is the Hessian of ln𝑃!,!,! 𝝁 𝑴  at 𝝁 = 𝝁∗. 

P 𝑴 β,σ,V  is the prior probability distribution of the hyper-parameters. We employ 



the priors for the β and σ, and set them to the same one as are employed in Section 2. 
The hyper-parameters are optimized using the Quasi Newton method, where the 

gradient is numerically obtained.  
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